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Abstract   

The dipole force on the beams caused by the parasitic
collisions (PCs) induces closed orbit distortions in the
interaction region (IR): “typical” bunches (those far away from
the ion-clearing gap), collide center-on-center with a small
horizontal crossing angle; “pacman” bunches (those close to
the gap) not only collide at an angle, but their centers are
displaced as well; and the orbit separation between the beams
at the PCs is different from nominal. We evaluate these effects
as a function of horizontal tune in first-order approximation.
This analysis yields one set of constraints that are absolutely
necessary, although far from sufficient, for reliable operation.
We conclude that the crossing angle and orbit displacements
are small except for tune values very close to the integer
(above or below), and that fractional tunes ÷ 0.35 are favored.

1  INTRODUCTION

The PEP-II design [1] calls for head-on collisions with
magnetic separation in the horizontal plane. This separation
scheme entails unavoidable PCs near the interaction point (IP)
whose effects on the beam-beam dynamics have been studied
quite extensively [1,2].

In this article we address the orbit distortion caused by the
net attractive force between the beams. The main consequences
that might be relevant to the beam-beam dynamics are an
induced horizontal crossing angle, and a change in the orbit
separation at the PCs. If the beams were uniformly populated,
the crossing angle would be the same for all bunches.
However, the existence of an ion-clearing gap complicates
matters a bit: those bunches near the head or the tail of the
train (dubbed “pacman bunches”) do not experience all PCs and
hence their crossing angles are different from those bunches in
the middle of the train (dubbed “typical”). Pacman bunches
also collide off-center due to the imbalance of the net forces to
the right and to the left of the IP. Typical bunches experience
only a crossing angle without orbit separation at the IP.

2  CALCULATION

The basic beam parameters and optics of the IR are given in
Ref. [1]. There are four parasitic collision points on either side
of the IP, and the optics is symmetrical about the IP in this
region. The PCs are spaced by 63 cm, which is half the bunch

                                                
  †Work supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, High Energy Division,
of the U.S. Department of Energy under Contract no. DE-AC03-
76SF00098. Published: Proc. EPAC94, London, England, June 27
- July 1, 1994, p. 1147.

spacing. We assume that the ion-clearing gaps in both beams
are of the same length, and that the beams are stored in such a
way that gaps “collide” with gaps and beams with beams. In
other words, we assume that the bunch at the head of the train
in one beam collides at the IP with the bunch at the head of
the train in the other beam.

The general expression for the closed orbit distortion Xo
and slope ′Xo (relative to the nominal orbit) at an observation
point o produced by discrete kicks ∆ ′Xk  are given, to first order
in ∆ ′Xk , by

  
Xo =

βo
2sin πν

∆ ′Xk
k
∑ βk cos(∆φk − πν)      (1)

and

′Xo ≡ dXo

ds
= 1

2 βo sin πν
∆ ′Xk

k
∑ βk sin(∆φk − πν)(

− ′αo cos(∆φk − πν))
    

(2)

where ∆φk  is the horizontal phase advance of point k relative
to o and ν  is the horizontal tune. The phase advances ∆φk
must be computed by going from o to k in the same sense
around the ring for all k, so that they are always ∆ 0. In our
case, the kicks ∆ ′Xk  are produced by the PCs. Each bunch
experiences four PCs on either side of the IP, and these PCs
are labeled k = –4,...,4, as shown in Fig. 1.
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Fig. 1: Plan sketch of the IR showing all four PCs on either
side of the IP. Black bunches are shown in their actual
position. White bunches show the positions of the PCs when
the bunches move by half of a bunch spacing (LEB=low-
energy beam, HEB=high-energy beam).

If the horizontal displacement x and azimuthal coordinate s
(for both beams) point in the direction as sketched in Fig. 1,
then the kicks for k ∆ 1 are given by
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LEB: ∆ ′Xk = − 2r0 N–

γ +dk

HEB: ∆ ′Xk = + 2r0 N+

γ −dk










for k = 1,L, 4     (3)

while those for k Û –1 are given by ∆ ′X−k = −∆ ′Xk  for each
beam. The kick at the IP, ∆ ′X0 , is zero in first approximation
for all bunches. Here r0 = 2.815 × 10–15 m is the classical
electron radius, the γ’s are the usual relativistic factors, dk is
the orbit separation at the k-th PC, and the N’s are the
numbers of particles per bunch. The subscripts ± label the
positron or electron beam. If the observation point is the IP,
the relative phase advances are

  
∆φk =

2π ∆νk ,

2π (ν − ∆ν−k ),





k = 1,L, 4

k = −4,L, −1
      (4)

where the ∆ν ’s are the usual phase advances. For other
observation points (e.g., at a PC location), some of these
phase advances may have to be shifted by 2πν. Whatever the
observation point is, the phase advance ∆φo  is given by

∆φo =
0,

2π ν,




s = o−

s = o+
     (5)

3  RESULTS

We have computed the orbit distortions and slopes for typical
and pacman bunches at the IP and at all four PCs [3]. Here we
present only the salient results. The PEP-II design calls for a
train of 1658 bunches followed by an ion-clearing gap of
length equivalent to 88 bunches. Since each bunch could, in
principle, experience a collision at the IP plus four PCs on
either side of the IP, there are four pacman bunches at the head
of the train and four at the tail. We label the head pacman
bunches 1, 2, 3 and 4, where #1 is first one. Pacman bunch #1
of the LEB experiences collisions k = 0, 1, 2, 3 and 4, where 0
is the main collision at the IP; bunch #2 experiences
collisions k = –1, 0, 1, 2, 3 and 4, etc. The remaining 1650
(typical) bunches experience all nine collisions, namely k = –
4, ... , 4.

3.1 Results for typical bunches.

The orbit distortion, Eq. (1), is a periodic function of ν  with
period 1, so that only the fractional part of the tune matters in
this approximation. It is also easily seen from Eqs. (1–5) and
the symmetry of the IR optics that the orbit distortions at PCs
to the left of the IP (k = –1, ... , –4) are of the same
magnitude and opposite sign as those to the right of the IP.
Similarly, the orbit distortion of a given tail pacman bunch is
of the same magnitude and opposite sign as that for the
corresponding head pacman bunch at the same location.

The symmetry of the IR optics implies that typical
bunches have   Xo = 0  and   ′Xo ≠ 0 , leading to a finite crossing
angle, as shown in Fig. 2.

Fig. 2: Horizontal slopes at an LEB point immediately
upstream of the IP, and full crossing angle of typical bunches.
The crossing angle is computed assuming the same fractional
tunes in both beams.

3.2 Results for pacman bunches.

Figure 3 shows the absolute and relative displacements of the
orbits of the 1st pacman bunches at the IP. Both bunches are
typically displaced to the same side of the nominal orbit
because the net imbalance of the forces from the PCs is such
that the head bunches of both beams are pulled in the x < 0
direction. By symmetry, the last bunches at the tails of the
beams are pushed towards x > 0  by the same amount as the
head bunches are pushed towards x < 0 . The magnitude of the
displacement of the 1st pacman bunch from its nominal orbit
is ñ 10 µm for most values of the tune. More interestingly,
the displacement of one bunch relative to the other, which is
what matters for the beam-beam dynamics, is ∆X < 2 µm.
These numbers are small compared to the rms bunch width of
152 µm.
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Fig. 3: Orbit distortions of the head pacman bunches at the IP.
The change in orbit separation ∆X is computed assuming that
the two beams have the same fractional tune.

Figure 4 shows the absolute orbit separation between the
two beams at the IP for all four pacman bunches at the head of
the train. It is clear that the largest effect is for the 1st pacman
bunch (we recall that typical bunches have zero separation at
the IP).

Fig. 4: Beam orbit separation at the IP for all four head
pacman bunches.

4  CONCLUSIONS

Unless the tune is very close to an integer value (from below
or from above), we conclude that the closed orbit distortion

from the PCs is so small for nominal PEP-II parameters that
it is expected to have a negligible effect on the dynamics
[4,5,6]. The first and last pacman bunches experience the
largest orbit separation at the IP. Typical bunches experience a
larger shift in orbit separation at the PCs, and a larger crossing
angle at the IP, than pacman bunches [3]. More specifically,
our results can be summarized as follows:

4.1 Crossing angle.

For fractional horizontal tunes in the range 0.15 ñ ν  ñ 0.85,
typical bunches collide with a horizontal crossing angle |φ| ñ
0.1 mrad, assuming the same fractional tune for the two
beams. The 1st pacman bunches collide at a smaller angle, |φ|
ñ 0.05 mrad, and the other pacman bunches collide at angles in
between 0.05 mrad and 0.1 mrad. It is always possible to
cancel the crossing angle provided that one beam has fractional
tune > 0.35 and the other < 0.35. In any case, the crossing
angle is much smaller than the ratio σx/σ…  = 15.6 × 10–3, and
therefore this crossing angle effect is expected to be negligible
[5].

4.2 Orbit separation.

Pacman bunches collide off-center at the IP. The 1st pacman
bunches at the head of the trains (and the last pacman bunches
at the tail), have the largest orbit displacements. For fractional
tunes in the range 0.15 ñ ν  ñ 0.85, the bunch centers are
displaced from the nominal orbit by |X±| ñ 10µm, which is ñ
7% of the rms beam size, σx = 152 µm. Multiparticle
simulations for displaced beams [6] suggest that a separation
of this magnitude should have a negligible effect on the
luminosity performance. Even better, if the two beams have
the same, or comparable, fractional tunes, the bunches in the
two beams are displaced to the same side of the IP, so that
their centers are displaced from each other by an even smaller
amount, |∆X| < 2 µm, which is negligible. If the beams have
substantially different fractional tunes, however, the bunch
separation can be significant.

The beam separations of all bunches (typical and pacman)
at all PCs are modified from the nominal values. At any given
PC the fractional change in orbit separation, ∆d/d, is largest
for a typical bunch and smallest for the head pacman bunch.
For any given bunch, the effect is largest at the 1st PC and
smallest at the 4th PC. The change ∆d/d can be positive or
negative: if the beams have comparable fractional tunes in the
range 0.15 ñ ν ñ 0.85, the magnitude of the effect, |∆d/d|, is at
most 1.5%, which is negligible.

4.1 Tune values.

A positive value of ∆d/d indicates larger-than-nominal
separation, which is favorable from the perspective of beam-
beam dynamics. For all bunches, and for all PCs, ∆d/d is > 0
for ν   ÷ 0.4 and thus this is the favored range of tunes
(assuming equal fractional tunes for the two beams). The
crossing angle vanishes for ν   ≈ 0.35, but it is not large for
any reasonable value of the tune. Thus the dynamics favors the
range of fractional tunes  ÷ 0.35.
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